South-Korea (한국어)
South-Korea (한국어)
Case Study

Purdue University 학생들에게 3D 세계가 열립니다.


From left, civil engineering junior Gordon Jarrold, post-doc student David Restrepo, Professor Pablo Zavattieri, civil engineering senior Cristian Tejedor and aeronautics and astronautics junior John Cleveland.

Students enjoy the iterative nature of the 3D printing process, which helps understand analysis techniques.

Opening up a world of opportunity.

3D printing at Purdue University (Purdue) has opened up a world of opportunities to students, taking them beyond 2D concepts to creating tangible, real-world designs. For Assistant Professor of Mechanical Engineering David Cappelleri, 3D printing with PolyJet technology has changed the way his students approach the design process entirely. Cappelleri uses 3D printing to create custom surgical equipment, and found that moving away from an inherently 2D method of laser cutting to a more hands-on approach has profound benefits.

 

“It’s enabled us to start thinking in 3D,” Cappelleri said. “Thinking in 3D is a much more intuitive way to design, and that makes everything go faster. When we can design for 3D printing, we can start to get functional designs with structural integrity.”

The iterative nature of 3D printing has also fundamentally changed the way Cappelleri’s teaches design. He has also noticed a shift in his students’ thinking since they have transitioned into 3D printing. While they might enjoy the design and print process, it’s the analysis that happens afterward that Cappelleri finds of value for his students.

“Students are very enthusiastic,” Cappelleri said. “They love to see what’s on the screen come to life, and because of the iterative nature of the 3D printing process, they can design and build again, which gives them motivation to understand analysis techniques.”

[Students] love to see what’s on the screen come to life, and because of the iterative nature of the 3D printing process, they can design and build again, which gives them motivation to understand analysis techniques.

Advancing research. 

Thomas Siegmund, Professor of Mechanical Engineering at Purdue, and his team of students use 3D printing to research a variety of structures to determine what designs are viable and whether or not they have structural implications. Siegmund and his team have used 3D printing to study Topologically Interlocked Material, defined as load-carrying assemblies of unit interacting by contact and friction. They also have investigated the relationship between printed part size and part strength and failure modes.

 

They’ve also used 3D printing to research Kinetogami, a reconfigurable, combinatorial and printable sheet folding inspired by the Japanese art of origami. The goal is to determine what kind of internal structures are useful, and what longterm effects they may have. Like Professor Cappelleri, Siegmund uses 3D printing to better understand the possibility of designs, and to inspire students at varying experience levels to push innovation. 

Thomas Siegmund and his team use 3D printing to study Topologically Interlocked Material, defined as load-carrying assemblies of unit interacting by contact and friction. 
An example of custom surgical equipment created by
David Cappelleri and his students at Purdue University.

From hypothesis to applied research.

Associate Professor of Civil Engineering Pablo Zavatteri takes his cues from nature. His team is researching the mantis shrimp, which breaks open the shells of its prey with its strong hammer-like appendage called a dactyl club, achieving an acceleration of a .22 caliber bullet and very high force. With 3D printing, Zavatteri determined the structural design of the mantis shrimp’s club could be applied to products that absorb energy or mitigate damage, such as helmets or earthquake protection.

“We found it’s a composite material similar to material used for cars and airplanes, but the architecture is very different,” Zavatteri said. The team found the architecture contains fibers that are arranged in a helicoidal structure. However, each layer follows a wavy surface making it very difficult to reproduce with any other fabrication technique, except 3D printing. “We tried to understand why nature came up with these designs, which we are testing with 3D printed prototypes. We call these biomimetic composites, and while this is an ongoing investigation, we have already identified many different applications.”

 

The common denominator of all three professor’s research is 3D printing. For professors and students at Purdue, 3D printing aids in the learning and research process, whether it’s testing hypotheses or determining the feasibility of designs, the benefits of applied research are clear.

“The opportunity to actually make things with a 3D printer, we all see long-term research opportunities in this,” said Siegmund.



고객사례 다운로드

Related Content

PolyJet in Microfluidics

PolyJet 기술을 사용한 3D 프린팅 미세 유체 공학.

미세 유체 공학은 의료 및 엔지니어링 분야에 응용되고 있습니다. 연구자들이 3D 프린팅이 미세 유체 소자의 제조를 바꿀 수 있다고 믿는 이유를 알아보십시오.

더보기
3D printing unlocks new opportunities to advance vascular care.

Jacobs Institute의 공동 의료 연구 기관이 3D 프린팅 솔루션을 개척합니다.

Jacobs Institute에서 의료 모델링을 혁신하여 연구, 교육 및 경제성을 개선합니다.

더보기
Abstract blue image.

3D 프린팅된 마네킹으로 응급 의료 요원 교육을 개선합니다.

미네소타 대학교 의과대학에서는 3D 프린팅을 이용한 사실적인 기도 확보 훈련용 마네킹으로 응급 의료 요원 교육을 개선합니다.

더보기
PolyJet in Microfluidics

미세 유체 공학은 의료 및 엔지니어링 분야에 응용되고 있습니다. 연구자들이 3D 프린팅이 미세 유체 소자의 제조를 바꿀 수 있다고 믿는 이유를 알아보십시오.

3D printing unlocks new opportunities to advance vascular care.

Jacobs Institute에서 의료 모델링을 혁신하여 연구, 교육 및 경제성을 개선합니다.

Abstract blue image.

미네소타 대학교 의과대학에서는 3D 프린팅을 이용한 사실적인 기도 확보 훈련용 마네킹으로 응급 의료 요원 교육을 개선합니다.