South-Korea (한국어)
South-Korea (한국어)
Case Study

최신 프로토타입이 사이클링에 대한 열정을 고취시킵니다.


This color model shows the pressure that a rider puts on this seat.

Trek makes prototype parts that look and feel like production parts with additive manufacturing..

Improving your ride, one prototype at a time. 

Think of your bike. How many materials does it represent? A rigid metal frame, firm rubber tires, soft handlebar grips, a cushioned seat, clear and colored lenses — a lot of engineering and testing go into a smooth, fast ride. Engineers and designers at Trek Bicycle in Waterloo, Wisconsin, are famously obsessed with improving that ride.

 

Their innovations have included a proprietary carbon-fiber manufacturing method that produces record-breaking lightweight frames, and an ultra-aerodynamic airfoil, the mere shape of which can provide not just extremely low drag, but even negative drag, or thrust. Trek engineers, designers and technicians have bikes on their minds and, most days, their bodies on bikes. Along with a great deal of road-inspired innovation and testing, a cutting-edge 3D printer helps them chase the perfect ride.

It’s important for our prototype parts to look and feel like production parts.

Trek’s prototyping lab was among the first to adopt the Objet500 Connex3, an advanced color multi-material 3D printer that runs on PolyJet technology. It creates prototypes that look and feel like production parts, with more material options and more uptime than ever before. The system builds color parts with clear, tinted and flexible components all in one job, for example. Specifically, engineers at Trek embraced the capability to integrate soft rubber-like components into models built from their favorite prototyping material, durable Digital ABS.

 

This is crucial because so many bike parts and accessories contain rigid and soft components. Before Connex3, the lab would have had to build those devices in separate jobs, swapping out 3D printing materials in between, and then bond the components. Or, to print in one job, downgrade the rigid portions to a less durable, non composite material. According to engineering tech Guadalupe Ollarzabal, when a prototype leaves the lab, the designers or customers who handle it don’t necessarily remember it’s 3D printed and that, depending on the material, might be fragile. That’s why the shop uses Digital ABS as much as possible. 

Trek’s prototype development department uses multimaterial 3D printing to achieve final-product realism.
Trek’s Objet500 Connex3 created this durable Digital ABS
chain guard with rubber-like components in one print job.

“For the electronics guys, some of their prototypes are super small, with thin walls. We’ve got guys using them for light fixtures and USB holders,” Ollarzabal said. “Now we can give them a functional work piece to test with Digital ABS and rubber in one part. I have an example on the floor that looks really close to a production piece.” Accessories like handlebar grips and chain guards require the same realism for fit and function testing, including rough rides on Trek’s onsite trails. “It’s important for our prototype parts to look and feel like production parts,” says Mike Zeigle, manager of Trek’s prototype development group.

 

Except when it’s not: Sometimes, the group is tasked with creating a communication tool, not to test a new product but to convey an idea in three dimensions. For example, an array of human pelvic bones atop model bike seats appeared at a recent trade show. For these communication tools, color 3D printing comes in handy. Ollarzabal’s team was able to translate finite-element analysis data into a 3D map of a bike seat showing the pressure a rider applies to each area. “Most people think they just sit on the whole bike seat, but there’s more pressure on certain parts than others. This shows the pressure points so designers can make decisions, like where to put high-density foam, for example,” he says. This obsession with details helps Trek continually improve cycling. “In order to make the best bikes here at Trek, we need the best tools. And Connex3 is the best tool for the job,” says Zeigle.

고객사례 다운로드

Related Content

pj models 136 color rings  2

사실적인 프로토타이핑을 위해 최적화하는 방법

본 백서에서는 Connex3에 대해 알아야 할 모든 사항과 기업이 이러한 기능을 사용하여 현실적인 프로토 타이핑을 최적화하는 방법에 대해 알아봅니다.

더보기
Advanced design

Accelerate Product Design with Stratasys

Discover advanced rapid prototyping with Stratasys additive manufacturing solutions and elevate your product development to new heights with our detailed guide.

더보기
Stratasys J8 Series 3D Printers

3D 프린팅, 디자인의 수준을 높이다.

Stratasys J8 시리즈 3D 프린터를 자세히 알아보고 이 프린터가 모든 산업 및 분야에서 디자인 리얼리즘에 어떻게 영향을 미치는지 확인해보세요.

더보기
pj models 136 color rings  2

본 백서에서는 Connex3에 대해 알아야 할 모든 사항과 기업이 이러한 기능을 사용하여 현실적인 프로토 타이핑을 최적화하는 방법에 대해 알아봅니다.

Advanced design

Discover advanced rapid prototyping with Stratasys additive manufacturing solutions and elevate your product development to new heights with our detailed guide.

Stratasys J8 Series 3D Printers

Stratasys J8 시리즈 3D 프린터를 자세히 알아보고 이 프린터가 모든 산업 및 분야에서 디자인 리얼리즘에 어떻게 영향을 미치는지 확인해보세요.