South-Korea (한국어)
South-Korea (한국어)
Case Study

세상에서 가장 진보된 커리큘럼을 선도합니다.


Science meets function with 3D printing.

Enabling production of surgical planning models with 3D printing.

3D printing vital models for surgeons. 

Founded in 1361, the University of Pavia is an established research institution with three hospitals. As one of Italy’s leading educational institutions, it invests in the most advanced technology and offers a range of specializations, including robotic abdominal surgery and clinical research. Technical and practical experience, along with collaboration across departments, drives the curriculum, especially for the university’s medical school, which follows a comprehensive approach to health care.

“Working in tandem with the university hospital means we continually look to improve patient care and equip our surgeons with the information required to plan an operation in detail, which often means seeking out alternative treatment methods,” said Professor Ferdinando Auricchio, Ph.D., head of the Computational Mechanics and Advanced Material Group, Department of Civil Engineering and Architecture at the University of Pavia.

When evaluating our surgery process we learned 3D printing could enable us to produce surgical planning models and potentially reduce patient theater time.

3D printing finer details.

Traditionally, when planning surgical procedures the medical department relied solely on CT scans, past experience and a surgeon’s skill. However, patient-specific complexities were often missed and proved costly in both time and money for the hospital. Instead, the University of Pavia looked to 3D printing to help develop more detailed surgical plans and ultimately provide better quality patient care with lower-risk operations. “When evaluating our surgery process we learned 3D printing could enable us to produce surgical planning models and potentially reduce patient theater time. This is particularly the case for non-intrusive procedures that typically require only a minor incision,” said Professor Andrea Pietrabissa, Director of Surgery Unit II, Policlinico San Matteo.

 

Soon after the initial trial using 3D printed medical models, the university added PolyJet™ 3D Printing technology to its prototyping laboratory, which it calls the Protolab. Now the university produces 3D printed surgical guides for every spleen and kidney operation, and about half of the pancreatic surgeries. “With its super-fine 16-micron layer printing, the Objet30 Pro provides us with highly accurate 3D printed models with the smallest of detail in VeroClear material. This is especially crucial for vascular models in order to locate the blood system,” said Stefania Marconi, researcher at the University of Pavia.

3D printed anatomical models help reduce unexpected
risks during surgery.
3D printed kidney model in VeroClear demonstrates the
small details of the complex vascular system

Better prepared for patient outcomes.

By converting CT scans into 3D printed surgical guides, the university transformed its preparation process and can now produce models for individual patient cases. These include splenectomies and donor kidney organs. The 3D printed anatomical models reduce unexpected risks and help surgeons locate access points for their instruments during laparoscopic and robotic surgeries. The university recently provided surgeons with a 3D model of a kidney to detect and procure the organ in preparation for a transplant using the robotic surgical system ‘da Vinci’.

 

This enabled them to navigate through the complex vascular network and recognize distances between organs, which was critical in avoiding damaging crucial vessels. As they continue to use leading technology to 3D print anatomical models for most of their operations, the University of Pavia will continue to set the standard in surgical preparation. “Thanks to the incredible accuracy, the 3D printed surgical guides have proved instantly popular amongst the surgeons,” said Auricchio. “With more of our surgeons having a physical model of the patient’s organs, it equips them with vital details before operations.”

고객사례 다운로드

Related Content

BiologIC is the first company in the UK — and one of the first in Europe — to install Stratasys’ new J826 3D Printer. Picture shows, from left: BiologIC co-founders Dr Colin Barker, Richard Vellacott and Nick Rollings.

BiologIC Technologies는 3D 프린팅 주문형 생물학을 사용합니다.

Learn how BiologIC Technologies’ “Desktop Computer of Biology” comes to life with Stratasys J826 Prime 3D printer.

더보기
i-Tork Controls Solves Prototyping Problems With PolyJet™ Technology

아이토크, 3D 프린팅으로 확실한 성공을 이뤄내다.

아이토크컨트롤즈는 Stratasys PolyJet 기술로 프로토타이핑의 문제점을 해결합니다.

더보기
BiologIC is the first company in the UK — and one of the first in Europe — to install Stratasys’ new J826 3D Printer. Picture shows, from left: BiologIC co-founders Dr Colin Barker, Richard Vellacott and Nick Rollings.

Learn how BiologIC Technologies’ “Desktop Computer of Biology” comes to life with Stratasys J826 Prime 3D printer.

i-Tork Controls Solves Prototyping Problems With PolyJet™ Technology

아이토크컨트롤즈는 Stratasys PolyJet 기술로 프로토타이핑의 문제점을 해결합니다.

콜로라도 볼더 대학교 교수 Rob MacCurdy가 의료 모델에 3D 프린팅을 사용하여 혁신을 실현하는 방법을 확인해보십시오.