Traditionally, this procedure, a cranioplasty, required surgeons to tailor polymethyl-methacrylate (PMMA) bone cement implants to the patient’s skull using silicone molds. But these molds often have poor aesthetic results, long production times and high costs. Additionally, the operation would be lengthy and the final outcome was not guaranteed.
“Additive technology gives bone cement (PMMA), a proven material, a new life and greater application because with 3D printing it is now possible to easily and accurately create the complex shapes required for custom implants,” said Katalenic. How was the outcome of the 23-year old cranioplasty patient? “The patient is very pleased with the results of her operation,” said Sercer.
CATeh was founded with the goal of becoming the leading regional center for research, development and implementation of additive technologies connecting science and industry. The university now offers an elective course, “Modern Additive Manufacturing,” in an effort to ready students across multiple disciplines in the technological possibilities of 3D printing.
3D printing technology has also solved another production challenge in prosthetic molds. The exothermic, or heat-generating properties of the polymerization stage in the cooling process of the bone cement, can make it difficult to find a material that can be easily separated from the mold. “Traditional research methods in polymer processing would not be able to achieve the results we achieve with the 3D printed mold,” said Miodrag Katalenic, Chair of Polymer Processing at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
The university continues to push the boundaries of implementing additive technologies. To date, 13 surgeries have been done using 3D printing technology. In addition to cranioplasties, the university hospital has also performed reconstruction of the vertebrae and half of the jaw.
“Additive technology gives bone cement (PMMA), a proven material, a new life and greater application because with 3D printing it is now possible to easily and accurately create the complex shapes required for custom implants,” said Katalenic. How was the outcome of the 23-year old cranioplasty patient? “The patient is very pleased with the results of her operation,” said Sercer.
CATeh was founded with the goal of becoming the leading regional center for research, development and implementation of additive technologies connecting science and industry. The university now offers an elective course, “Modern Additive Manufacturing,” in an effort to ready students across multiple disciplines in the technological possibilities of 3D printing.